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Housekeeping

1. Today we are going to make R less confusing, among other
things.

2. The answer key to problem set 1 is on canvas.
3. Problem set 2 and all necessary materials are on canvas. PS2 is
due on Tuesday.

4. I will also have PS1 graded by then.
5. Make sure to complete the required readings!
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Big Question: How do we know what we
know?



Challenges to assessing cause and effect

• Randomness
• Endogeneity
• Measurement error
• Complexity of human behavior



Today: the Gauss-Markov theorem

We will focus on conditions under which OLS is the . . .

B est (most consistent)
L inear (and sometimes non-linear)
U nbiased (most accurate)
E stimator of β



The Core Model: Overview



Quantifying relationships between two variables

Correlations tell us about the association between two variables
(X, Y), but we may want to know more about how changes in one

variable X correspond to changes in another variable Y.



Quantifying relationships between two variables

Behold, OLS: ordinary least squares regression.
OLS lets us quantify the relationship between X and Y to assess:

1. Whether the relationship occurs by chance, and
2. What we expect Y will be for any given value of X.

Called linear regression because we are estimating a line that best
characterizes the relationship between X and Y.



The core model

Y = β0 + β1X+ ϵ

Y The dependent variable, or the outcome of interest
X The independent variable, or a possible cause
ϵ The error term, or everything we haven’t measured in our model

β0 The intercept, or the value of Y when X is zero
β1 The slope, or how much change in Y is expected if X changes by

one unit



Application: presidential elections



The core model revisited

Yi = β0 + β1Xi + ϵi

Adding in the parameters and terms from our application:

Vote sharei = β0 + β1Income changei + ϵi

β0 Intercept; expected vote share when income change is zero
β1 Slope; expected change in vote share for one-unit increase in

income change
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The model we actually estimate

Since we don’t know the true (population) values of β0 and β1, we
use data to estimate them as β̂0 and β̂1.

We estimate each using the concepts of fitted values:

Ŷi = β̂0 + β̂1Xi

and residuals:

ϵ̂i = Yi − Ŷi
= Yi − β̂0 − β̂1Xi



Estimating β0 and β1

OLS identifies values of β̂0 and β̂1 that define a line that minimizes
the sum of squared residuals (SSR)

N∑
i=1

(ϵ̂i)
2 =

N∑
i=1

(Yi − β̂0 − β̂1Xi)2

Through some calculus to carry out the minimization of SSR, we get
the OLS estimate of β̂1

β̂1 =

∑N
i=1(Xi − X̄)(Yi − Ȳ)∑N

i=1(Xi − X̄)2

The OLS estimate of β̂0 is relatively easy once we have β̂1

β̂0 = Ȳ− β̂1X̄





Calculating the line of best fit using regression in R

ols1 = lm(formula = vote rdi4,data = PresVote)
ols1$residualsplot(vote rdi4,data = PresVote)

abline(ols1)



Alas, OLS is not a magic formula.



Challenge 1: Regression and bias



Endogeneity

1. Independent variable (X) is endogenous if correlated with error
term in the model (ϵ) (mutual causality, reverse causality, etc.)

2. Independent variable is exogenous if it is not associated with
factors captured in the error term.

3. Error term is unobservable, so hard to know if an independent
variable X is endogenous or exogenous.

4. Difficult to assess causality for endogenous independent
variables.



Bias in Statistics

Definition: A biased coefficient estimate will
systematically be higher or lower than the true
value.

• An estimator is unbiased if the expected value equals the true
value:

E[β̂1] = β1 + corr(X, ϵ)σϵ

σX

• β̂1 is unbiased if the error is uncorrelated with X – i.e., if X is
exogenous
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OLS & unbiased estimates

The distribution of an unbiased estimator is centered around the
true value of the parameter. In the case of regression, this
parameter is typically β.

On one condition...

The OLS estimator β̂1 is an unbiased estimator of β1 if X and ϵ

are not correlated.
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Challenge 2: Inconsistency



3 factors influence the estimated variance of β̂1

1. Model fit, as represented by the variance of the regression, σ̂2.
2. Sample size. The more observations, the lower will be the
variance of β̂1.

3. Variation in the independent variable, X. The more that X varies,
the lower will be the variance of β̂1.



Let’s look at goodness of fit

Definition: How well the model fits the data.

There are at least four ways to assess goodness of fit:

1. Variance of regression, σ̂2

2. Standard error of regression, σ̂
3. Plotting model fit: residuals, fitted values, and diagnostics.
4. Square of correlation between fitted and observed values of Y:
R2
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A bit on R2

Formally, R2 is calculated as corr(Ŷi, Yi)
2.

(It can also be interpreted as the proportion of the variance in Y that is explained by

the model.)

• Higher values of R2 can sometimes be interpreted as indicating
a “better fit”.

• important: Statistically speaking, a high R2 is neither necessary
nor sufficient for an analysis to be useful.





Looking at the residuals vs. fitted plot for PresVote



What if we controlled for reelection?



What does this figure have to do with consistency?



Consistency and Probability Limits

plim

plim, or the probability limit, is the value to which a distribution
converges as the sample size gets very large (how large is very large?)



Example: the coin toss

• What is the probability limit
of a coin toss, if repeated
enough times?

• How many times does it need
to be repeated?



Example: the coin toss

• What is the probability limit
of a coin toss, if repeated
enough times?

0.5

• How many times does it need
to be repeated?

>= 100



Challenge 3: Errors with errors



Overview: Rejecting the null hypothesis

Type I errors occur when we reject a null hypothesis that is in fact
true. Most common.

Type II errors occur when we fail to reject a null hypothesis that is
in fact false. Common with small sample sizes, or
when we have a high threshold of statistical
significance (e.g., α = 0.001)



β̂1 and Standard Errors

One of our primary statistics for measuring the uncertainty of our
estimates is se(β̂1). This tells us how wide the distribution of β̂1 will

be under the null hypothesis.



Normal distribution of coefficient estimates

The distribution of β̂1 will be distributed normally if either:

1. Sample size is large. Central Limit Theorem tells us sufficient
number of independent draws from any distribution will be
normally distributed.

2. Errors are normally distributed. True even with a small sample
size. When might errors not be normally distributed?



Distribution of β̂1 under the null hypothesis



β̂1 and Standard Errors

Our real concern isn’t the standard error itself, but how it relates to
the β̂1.

One way to characterize this is the ratio β̂1
se(β̂1)

• This ratio (the t-statistic) tells us how different our coefficient is
from 0 in standard error units.

• When not dealing with H0 : β1 = 0, it tells us how far the
coefficient is from the null hypothesis value of β



Say what...? 3 Definitions

1. Errors are homoskedastic if they have the same variance (this is
good—it means errors are just random noise.

2. Errors are heteroskedastic if they have different variance (this is
v bad).

3. Errors are autocorrelated if the error from one observation is
correlated with the error of another (also v bad).



Homoskedasticity = errors evenly distributed



Homoskedasticity = errors evenly distributed



One more issue: autocorrelation

If errors are autocorrelated, then knowing the error of observation 2
would provide information about the likely error of observation 3.



Checking in

⇒ Violating the homoskedasticity or no-autocorrelation
assumptions/conditions does not cause β̂1 to be biased.

Why?

⇒ It also doesn’t cause β̂1 to be inconsistent.

Why?



Bivariate description and regression in R
after the break.
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